Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters

Language
Document Type
Year range
1.
medrxiv; 2023.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2023.10.20.23297300

ABSTRACT

Among Azerbaijani healthcare workers (HCWs), compared to primary vaccine series, CoronaVac booster relative vaccine effectiveness was 60% (95% CI:25-79) and 79% (95% CI:44-92) against symptomatic and medically attended illness, respectively, during an Omicron BA.1/BA.2 period. Our results support timely CoronaVac booster uptake among Azerbaijani HCWs to reduce morbidity.


Subject(s)
COVID-19
2.
preprints.org; 2023.
Preprint in English | PREPRINT-PREPRINTS.ORG | ID: ppzbmed-10.20944.preprints202304.0200.v1

ABSTRACT

Despite offering free-of-charge COVID-19 vaccines starting July 2021, Guatemala has one of the lowest vaccination rates in Latin America. During September 28, 2021 to April 11, 2022, we conducted a cross-sectional survey of community members adapting a CDC questionnaire to evaluate COVID-19 vaccine access and hesitancy. Of 233 participants ≥12 years, 127 (55%) received >1 dose of COVID-19 and 4 (2%) reported prior COVID-19 illness. Persons ≥12 years old unvaccinated (n=106) were more likely to be female (73% vs 41%, p<0.001) and homemakers (69% vs 24%, p<0.01) compared with vaccinated participants (n=127). Among those ≥18 years, the main reported motivation for vaccination among vaccinated participants was to protect the health of family/friends (101/117, 86%); 40 (55%) unvaccinated persons reported little/no confidence in public health institutions recommending COVID-19 vaccination. Community- and/or home-based vaccination programs, including vaccination of families through the workplace, may better reach female homemakers and reduce inequities and hesitancy.


Subject(s)
COVID-19
3.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.12.18.20248255

ABSTRACT

BackgroundSARS-CoV-2 outbreaks in nursing homes can be large with high case fatality. Identifying asymptomatic individuals early through serial testing is recommended to control COVID-19 in nursing homes, both in response to an outbreak ("outbreak testing" of residents and healthcare personnel) and in facilities without outbreaks ("non-outbreak testing" of healthcare personnel). The effectiveness of outbreak testing and isolation with or without non-outbreak testing was evaluated. MethodsUsing published SARS-CoV-2 transmission parameters, the fraction of SARS-CoV-2 transmissions prevented through serial testing (weekly, every three days, or daily) and isolation of asymptomatic persons compared to symptom-based testing and isolation was evaluated through mathematical modeling using a Reed-Frost model to estimate the percentage of cases prevented (i.e., "effectiveness") through either outbreak testing alone or outbreak plus non-outbreak testing. The potential effect of simultaneous decreases (by 10%) in the effectiveness of isolating infected individuals when instituting testing strategies was also evaluated. ResultsModeling suggests that outbreak testing could prevent 54% (weekly testing with 48-hour test turnaround) to 92% (daily testing with immediate results and 50% relative sensitivity) of SARS-CoV-2 infections. Adding non-outbreak testing could prevent up to an additional 8% of SARS-CoV-2 infections (depending on test frequency and turnaround time). However, added benefits of non-outbreak testing were mostly negated if accompanied by decreases in infection control practice. ConclusionsWhen combined with high-quality infection control practices, outbreak testing could be an effective approach to preventing COVID-19 in nursing homes, particularly if optimized through increased test frequency and use of tests with rapid turnaround. SummaryMathematical modeling evaluated the effectiveness of serially testing asymptomatic persons in a nursing home in response to a SARS-CoV-2 outbreak with or without serial testing of asymptomatic staff in the absence of known SARS-CoV-2 infections.


Subject(s)
COVID-19
4.
Rachel M Burke; Sharon Balter; Emily Barnes; Vaughn Barry; Karri Bartlett; Karlyn D Beer; Isaac Benowitz; Holly M Biggs; Hollianne Bruce; Jonathan Bryant-Genevier; Jordan Cates; Kevin Chatham-Stephens; Nora Chea; Howard Chiou; Demian Christiansen; Victoria Chu; Shauna Clark; Sara H. Cody; Max Cohen; Erin E Conners; Vishal Dasari; Patrick Dawson; Traci DeSalvo; Matthew Donahue; Alissa Dratch; Lindsey Duca; Jeffrey Duchin; Jonathan W Dyal; Leora R Feldstein; Marty Fenstersheib; Marc Fischer; Rebecca Fisher; Chelsea Foo; Brandi Freeman-Ponder; Alicia M Fry; Jessica Gant; Romesh Gautom; Isaac Ghinai; Prabhu Gounder; Cheri T Grigg; Jeffrey Gunzenhauser; Aron J Hall; George S Han; Thomas Haupt; Michelle Holshue; Jennifer Hunter; Mireille B Ibrahim; Max W Jacobs; M. Claire Jarashow; Kiran Joshi; Talar Kamali; Vance Kawakami; Moon Kim; Hannah Kirking; Amanda Kita-Yarbro; Rachel Klos; Miwako Kobayashi; Anna Kocharian; Misty Lang; Jennifer Layden; Eva Leidman; Scott Lindquist; Stephen Lindstrom; Ruth Link-Gelles; Mariel Marlow; Claire P Mattison; Nancy McClung; Tristan McPherson; Lynn Mello; Claire M Midgley; Shannon Novosad; Megan T Patel; Kristen Pettrone; Satish K Pillai; Ian W Pray; Heather E Reese; Heather Rhodes; Susan Robinson; Melissa Rolfes; Janell Routh; Rachel Rubin; Sarah L Rudman; Denny Russell; Sarah Scott; Varun Shetty; Sarah E Smith-Jeffcoat; Elizabeth A Soda; Chris Spitters; Bryan Stierman; Rebecca Sunenshine; Dawn Terashita; Elizabeth Traub; Grace E Vahey; Jennifer R Verani; Megan Wallace; Matthew Westercamp; Jonathan Wortham; Amy Xie; Anna Yousaf; Matthew Zahn.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.04.27.20081901

ABSTRACT

Background Coronavirus disease 2019 (COVID-19), the respiratory disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), was first identified in Wuhan, China and has since become pandemic. As part of initial response activities in the United States, enhanced contact investigations were conducted to enable early identification and isolation of additional cases and to learn more about risk factors for transmission. Methods Close contacts of nine early travel-related cases in the United States were identified. Close contacts meeting criteria for active monitoring were followed, and selected individuals were targeted for collection of additional exposure details and respiratory samples. Respiratory samples were tested for SARS-CoV-2 by real-time reverse transcription polymerase chain reaction (RT-PCR) at the Centers for Disease Control and Prevention. Results There were 404 close contacts who underwent active monitoring in the response jurisdictions; 338 had at least basic exposure data, of whom 159 had at least 1 set of respiratory samples collected and tested. Across all known close contacts under monitoring, two additional cases were identified; both secondary cases were in spouses of travel-associated case patients. The secondary attack rate among household members, all of whom had at least 1 respiratory sample tested, was 13% (95% CI: 4 - 38%). Conclusions The enhanced contact tracing investigations undertaken around nine early travel-related cases of COVID-19 in the United States identified two cases of secondary transmission, both spouses. Rapid detection and isolation of the travel-associated case patients, enabled by public awareness of COVID-19 among travelers from China, may have mitigated transmission risk among close contacts of these cases.


Subject(s)
COVID-19 , Respiratory Tract Diseases
SELECTION OF CITATIONS
SEARCH DETAIL